PROBLEMS OF THE THEORY OF MONOMOLECULAR
DISSOCIATION OF A ONE-CCMPONENT GAS AND DISSOCIATION
CONSTANT OF COy AT HIGH TEMPERATURES

N. M. Kuznetsov UDC 511.10

Equations determining the temperature of vibrations and dissociation constant of polyatomic
molecules with consideration of fast exchange of vibrational quanta are formulated. The
equations are simplified considerably if different groups of oscillators have similar tem-
peratures of vibrations. In the case of practical interest, it is sufficient to know the vibra-
tional relaxation time and monomolecular dissociation constant at high densities for solving
the problem in a harmonic approximation. Quantitative results are obtained for carbon
monoxide.

During thermal dissociation the ratio of the number of active n*, i.e., capable of spontaneous disso-
ciation, and inactive n polyatomic molecules at high densities remains in equilibrium. In a sufficiently
rarefied dissociating gas the-ratio n*/n is less than its own thermodynamic equilibrium value and depends
on density. '

These gualitative regularities, characteristic of any gas, are explained by all theories of monomolec~
ular dissociation (see, for example, monographs [1, 2] and a paper [3]) in which the rate of translational-
vibrational exchange of energy is considered in one or another approximation, but exchange of vibrational
guanta is not taken into account.

Nevertheless, there are cases when exchange of vibrational quanta affects the kinetics of dissociation
and it must be taken into account for a correct description of the process. This pertains first and foremost
to one-component molecular gases. Upon collection of identical molecules there occurs a relatively rapid
exchange of vibrational quanta which leads to the establishment of vibrational equilibrium (quasi-equilib-
rium) within the group of identical oscillators. Such quasi-equilibrium exists also during thermal dissocia-
tion of polyatomic molecules, since the dissociation rate for any densities does not exceed the rate of vi-
brational relaxation — a slower process than the exchange of vibrational quanta.

If the population of the vibrational levels of an active molecule is quasi-equilibrium, the nonequilib-
rium ratio n*/n and the monomolecular dissociation constant proportional to it are expressed by the vibra-
tional temperatures of the groups of oscillators. In this case, the more general relationship

n*/n=jf(T, Ty, Ty -..) (0.1)

determining the dependence of n*/n on the temperatures of the oscillators Tj and on the temperature of
translational motion is fulfilled instead of the usual thermodynamic relationship for T.

Strictly speaking, the region of quasi-equilibrium distribution of the energy of each group of oscilla-
tors has an upper limit ¢; above which the condition of fast exchange of vibrational quanta is not fulfilled as
a consequence of the strong anharmonicity of vibrations. (This problem in the case of diatomic molecules
was examined in detail in [4].) The vibrational states of the active molecule can be located both below
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(state I) and above (state II) the limits ¢;. For molecules in state I Eg. (0.1) is valid for any temperatures.
For molecules in state II the true value of n*/n differs slightly from (0.1) owing to disturbance of the quasi-
equilibrium distribution at oscillator energies greater than &;. However, for sufficiently high temperatures
[5] such that

e/ kTY 1,k>1 0.2)

where 7; is the vibrational relaxation time of the oscillators having a minimum vibration frequency, k is
the dissociation constant, and ¢ is the energy of the bond being broken, the deviation of n*/n from its equi-
librium value is determined mainly by the marked decrease of the quasi-equilibrium populations of the
vibrational levels in the neighborhood and below the limits ¢;. The aforementioned additional change of
n*n at temperatures satisfying inequality (0.2) is a relatively small correction.

The kinetics of monomolecular dissociationof a one-component gas at high temperatures satisfying
inequality (0.2) is examined below and relationship (0.1) is presumed to be fulfilled. Inequality (0.2) is
usually satisfied for kT/¢ > (0.04-0.06)—1n &, where 6 is the ratio of the gas density to its normal density.

1. Equations Determining the Temperature of Vibrations

and Rate of Monomolecular Dissociation

Calculation of the monomolecular dissociation constant in the case of fulfilling relationship (0.1) and
at a given temperature of translational motion T reduces to determination of the dependence of the disso-
ciation constant on the vibrdtional temperatures and to a calculation of these temperatures with considera-
tion of all positive and negative energy sources.

The dependence of the monomolecular dissociation constant on the vibrational temperatures in a har-
monic approximation (ky) and in ah approximation of an ergodic active molecule (k,) was determined in [6]
and has, respectively, the form

ky = Aexp(— e, S/ kE o)
ky= Aexp(—e,/kT,) ' (1.1)

Here, g4 is the activation energy, A is determined by Slater's formula [2]
zﬂ:A = Vzd-imiz / Ediz , (1 '2)

wj is the angular frequency of oscillations, the o; are the coefficients of expansion of the reaction coordi-
nate with respect to normal coordinates, Ty is the maximum temperature from the sequence Ty, Ty, .

If the reaction occurs without a change of spin, the activation energy figuring in (1.1) is equal to the
energy of breaking the chemical bond ¢. If the reaction is "spin-forbidden" and the limiting stage of the
reaction is the change of spin at the point of intersection of terms, the activation energy ¢, is equal to the
value of the potential at the point of intersection, and can be both greater and less than the bond energy.
The preexponential factor in such cases is considerably less than that determined by Egq. (1.2). For exam-
ple, for reactions of monomolecular dissociation of singlet molecules of CO, (high temperatures) and N,O
into CO and N,, respectively, with the formation of an oxygen atom in the triplet state, the experimentally
found [7, 8] dissociation constants at h1gh densities ky at which the ratio n*/n is equilibrium, and T = Ty,
Ty, «.. have the form _

ko = A exp (—e, / kT) . 1.3)

where A =101 gec?, £q = 110 kcal/mole for COy, and A = 10!t gec™, £q = 59.5 kecal/mole for N,O. The
corresponding values of the bond energy are equal to 126 and 38.3 keal/mole.

The vibrational temperatures established during thermal dissociation are determined by equations of
guasi-stationarity
1.4)

w + < aEi) kA, — Ei(T3)]

E;(z) =k0;/(exp6;/z— 1), 0 =h wi/k

Here, 7; and Ej are the vibrational relaxation time and energy of the i-th oscillator, 9Ej/ 5% is the
sum of the terms taking into account the change of the vibrational energy upon exchange of quanta, and Aj
is the contribution of the i-th vibration to the energy of the activated state of the active molecule [6]. In the
case of a harmonic molecule ,
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In the case of an ergodic active molecule A; =1 for oscillators having a maximum temperature and
Ay = 0 for all other oscillators. Equations (1.4) are a direct generalization of the equation describing the
guasi-statiomary stage of dissociation of diatomic gas [4, 5].

2. Simplification of Equations in the Case

of Fast Exchange of Quanta between Different Oscillators.

Isothermal Approximation

The complete set of data needed for an exact solution of Egs. (1.4) is unknown even for the simplest

_ polyatomic molecules. The basis of approximate solutions is the circumstance that the ratios of the times
of relaxation and exchange of vibrational quanta in many cases differ in order of magnitude from unity.
Such approximations are well known in the theory of vibrational relaxation. In particular, if the probability
of a one-quantum exchange between different groups of oscillators is considerably greater than the prob-
ability of vibrational-translational transitions, the system of relaxation equations reduces to one differen-
tial equation for the total number of vibrational quanta v and to simple algebraic relationships between
T;s T, and v, expressed [9, 10] in the form

v = Di(exp8;/ T; —1)™ (2.1

Approximation (2.1) is fulfilled best of all when "adjacent” values of ¢; satisfy the inequality
(8: =8, 1)/0, <1 (2.2)

In the case of fast exchange of vibrational quanta, relationships (2.1) are valid also in a dissociating
gas. The complete system of equations describing dissociation is obtained after adding to (2.1) the equa-
tion of quasi-stationarity of the number of vibrational quanta, which follows from (1.4) and in the case of

one-quantum exchange, i.e., when Z}aEi/at) /9{: 0, has the form
Z [E;(T)— E;(Ty)] /675 = /»‘2_ [Aigs —Ei (T))}/6; (2.3)

The following two possibilities of further simplification of the equations are typical.

1. It is known from experiment and the theory of vibrational relaxation of polyatomic molecules that
the vibrational relaxation time 7; of oscillators having a minimum frequency is usually considerably less
than all other 7;. In such a case, if is sufficient to leave one term containing 7y instead of the first sum in
Eg. (2.3). :

2. If thermal dissociation of molecules is the only cause of disturbance of thermodynamic equilib-
rium, the deviation of all Tj from T is comparatively small. Hence follows when fulfilling inequality (2.2)
that the relative differences of the two vibrational temperatures are quantities of the second order of small-
ness. This is seen directly from the following form of notation of relationship (2.1)

(T,——Tk)/T,:(G,——-Gk)(Th—-T)/@,T
The more common two - or three-quantum exchange [11}] in the case of almost multiple frequencies
(Fermi resonance) leads to practical equalization of the vibrational temperatures.

These circumstances permit using an isothermal model of a polyatomic molecule in calculating the
thermal dissociation rate. In the model it is assumed that all vibrational temperatures Ty are the same
and nonequilibrium of the state is manifested only in the difference of Ty from T.

Within the framework of the isothermal model, retaining in the first sum of (2.3) only the one term
i =1 corresponding to the lowest-frequency oscillator and disregarding the difference of ratios 6;/6; from
unity in the nonexponential part of (2.3}, we have
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o5 g 1z (B4 (T) — Ey(T)] /% = k(T) (e, — E) 2.4)

\\\ lgAT,

E EZ}Ei (Tx), k(Ty)=sAexp(— e,/ kTy)

Here, it is taken into account that for equality of all
vibrational temperatures
z=7\_10 \w 18\ 2

-2
2 Ay=1
Expression (2.4) for k(T}) follows from each Eq.(1.1).
, Transcendental equation (2.4) determines the depen~
19% dence of Ty and k(Ty) on the temperature and density of the
-4l gas. For its solution, we must know the parameters A and

g, figuring in the expression (2.4) for k(Ty) and the vibra-
Fig. 1 tional relaxation time 7;. Equation (2.4) can be regarded in

a more general sense as a relation between A7y, g4/kT

and the ratio of the actual rate constant k(Ty) into its equi-

librium value ko, = k(T). '

In the most interesting (in the sense of the interaction of the vibrational relaxation and dissociation
processes) temperature region
ET)= kT <<e,

Here, at least for not too large molecules, the total vibrational energy is also considerably less than
€4+ After appropriate simplifications in the nonexponential parts of Eq. (2.4), we have

Arlx=yexp[x[(i—y)],x=aa/kT,y=1—-Th/T (2.5)

This equation differs substantially from the corresponding equation for diatomic gas [5] in that it
contains as thermodynamic parameters not only the temperature but also the density (7 is inversely pro-
portional to density).

Let us consider at first the limiting cases of the solution of (2.5).

1. Small temperatures and large densities. In this case, as is easily seen, y <1 and consequently,
k=~ koo /

2. Large temperatures and small densities. In this case, the deviation of T} from T is large, i.e.,
y is of the order of unity, and changes little upon a change of temperature and density. Taking this change
iLto account only in the exponential part of (2.5), we find

k=~const /1t z

Thus, as could be expected, for small densities and high temperatures the monomolecular dissocia-
tion constant is proportional to the gas density.

In the remaining cegion of parameters Eq. (2.5) is solved numerically. The results of the solution
are presented in Figs. 1 and 2.

The dependence of k/k,, on ATy and x solved explicitly relative to log (k/k.) is expressed when 7 <
x < 26 also by the following interpolation formula:

t( 441075 — 4, —1<E<S
lg(k/km)={0 £>5

¢t = 0.337 z — 0.87 Ig (47,) + 2.8

This formula reproduces the solution of Eq {2.5) with an error of Ak/k < 0.2 upon a change of k/k
from 1 to 1075,
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TABLE 1

1

-
~
3

e /KT | lgiite/h) | K, sec” k*, sec™! 0

/ 08
L 10 8.73 | 1451 | 1.3.408 | 5.4.108 2.4
V/ 12 | 105 140 | 5.5.105 | 2.0.105 2.8
14 | 122 0.77 | 2.4.10° | 6.2.108 3.4
] 16 | 14.0 0.45 | 7.4.10¢ 1.8.10¢ i
" 18 | 15.7 0.20 | 2.4-100 | 4.5.10 5.3
P 20 | 175 0.04 | 6.0.105 | {1.1-10° 5.4

7

B
1

3. Dissociation Constant of Carbon Dioxide

o4
RL K ’ Carbon dioxide is one of the gases for the description of

the thermal dissociation of which the isothermal model consid-
ered above is applicable. The symmetric stretching vibrations
of the CO, molecules are in Fermi resonance with low-frequency, doubly degenerate flexural vibrations.
Therefore, the temperatures of the three oscillators of the molecule in a quasi-stationary process

Fig. 2

€O, — CO + O

is maintained practically equal owing to exchange of vibrational quanta (two quanta of flexural vibrations to
one quantum of symmetric stretching vibrations). It is known from experiment (see, for example, {12]) that
the energy of asymmetric stretching vibrations relaxes also during a time close to the relaxation time 7y
of flexural vibrations. The structure of the shock waves in carbon dioxide is characterized by the same
vibrational relaxation time 7;. The temperature dependence of 7y of carbon dioxide [13] is expressed by
the formula

lg (pry atm.sec) = —8.56 + 25 T~ (3.1)

In review [13] this dependence is presented graphically. Using (1.3) and (3.1), we can find the disso~
ciation constant k as a function of the gas temperature and density. For this purpose, it is sufficient to sub-
stitute the numerical values of A7y and x into the solution of Eq. (2.5) found in the preceding section (see
Fig. 1). The results obtained thereby are compared in Table 1 with the experimental data of S. A. Losev,
N. A. Generalov, and V. A. Maksimenko {14] on the dissociation rate of carbon dioxide in shock waves.

The figures presented in the fifth column of Table 1 were calculated by the formula
k* =3-107(e | kT)* V T exp (— & / kT) n sec™!

obtained in [14] by treating measurement results. The concentration of molecules n corresponding to the
table values of k and k* is 5-107% em®/mole.

The agreement of the calculated and experimental values of k is satisfactory within the limits of
error of measuring ky and 7;. This agreement indicates a determining role of relaxation of the average
vibrational energy in high~-temperature kinetics of monomolecular dissociation. It is possible that the di-
vergence between the calculations and experimental data upon a decrease of temperature is related with the
relative increase of the role of the neglected disturbance of the Boltzmaun distribution of energy with re-
spect to the upper vibrational levels. This pertains in particular to the last two rows of Table 1 to which
the limit of applicability of inequality (0.2) corresponds and where k ~ k., without consideration of distur-
bance of the Boltzmann distribution.

At present carbon dioxide is apparently the only one-component gas in which the monomolecular dis-
sociation rate has been measured at high temperatures. Such measurements are very difficult. Neverthe—
less, they are very necessary for understanding the basic regularities of monomolecular dissociation of a
one~component gas.

The author thanks S. A. Losev and N. A. Generalov for additional measurement data and I. S. Zas-
lonko for useful discussions.
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